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I derive from the Palatini formalism, in which metric and affinity are varied 
independently, an en~ergy-momentum complex qualitatively different in form 
from the usual energy-momentum representations of general relativity. A similar 
procedure can be carried out for electrodynamics, illuminating by analogy the 
structure of the gravitational Lagrangian. The new energy density vanishes for 
all static vacuum solutions of the Einstein equations, and the radiated energy 
from an isolated system in an asymptotically fiat space in general diverges. These 
facts suggest that the formalism could be used to express Mach's principle. 

1. I N T R O D U C T I O N  

There are m a n y  ways to describe the dis tr ibut ion o f  energy and momen-  
t um in general  relativity. An  infinity o f  "pseudotensors , "  "pseudo tenso r  
densit ies,"  and  "complexes , "  here denoted  by the general  symbol  t, , ,  have 
the p roper ty  that, when  combined  with the material  ene rgy -momen tum 
densi ty ~ ,  they satisfy the conservat ion equat ion  0~(t~ + Z ~ , ) =  0. In  spite 
o f  its appearance ,  this is a covar iant  relat ionship,  fully equivalent  to T~,;~ = 0. 
As Schr6dinger  (1950) pu t  it, a " s h a m  divergence"  compensates  for  a " s h a m  
tensor ."  The " p s e u d o "  character  o f  t~ is an expression o f  the fact that  
energy and  m o m e n t u m  cannot  be localized in an invariant  way, a con- 
sequence o f  the equivalence principle.  Formally,  it is due to the fact that  
t~, involves only  g,,~ and  its first derivatives, and  the latter can be made  to 
vanish at any  space-t ime event by a coord ina te  t ransformat ion.  The con- 
servation laws do,  however ,  al low a meaningfu l  definition o f  the total energy 
and  m o m e n t u m  o f  an isolated system via P~, = SSS (t~ + ~ )  do-v. 

The Lagrangian  for  general  relativity can be written as ~ = ~ + ~M- 
The gravi tat ional  par t  ~ is ag~R~,~,  with R~,~ the Ricci tensor,  

R~,~ = F~,~,v - F ~ , ,  + F~,~F ~a - F~,~Fa~ 
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and a = 1/16r Here ~M is the material Lagrangian, a function of g~", the 
nongravitational variables ~0 A, and the latter's derivatives. 

The oldest and most straightforward way of developing a gravitational 
energy-momentum pseudotensor begins by assuming that the F~. are the 
Christoffel affinities. Second derivatives of g ~  in ~G are eliminated by 
isolating them in an ordinary divergence by means of the identity 

i j , ~ ,  ~'~ _ _  / l " p  "l-~ o~ ,TOt "lr'~ p \ , r p  / "r'~ o "  x ~  o t  o~ o "  

The ordinary divergence may be dropped, and we can then write ~ '=  
~ + ~ M ,  with 

, r p  o "  o~ ~ o -  (r , , ro=-r , , r .=)  (2) 

The Einstein (1916) pseudotensor may now be defined by the canonical 
prescription 

t ~ = (O~'~/ ag~r - 8~ ~'c (3) 

(From now on t~ will denote this object. We will not deal with any of the 
other conventional pseudotensors, though for some purposes they are more 
useful than the Einstein expression. In common with it, they involve only 
g~. and g~,~,, and are quadratic in the first derivatives. Thus, all these objects 
are analogous to the usual energy-momentum tensor for electrodynamics.) 
Explicitly, 

v a/3 v a ~  /3 v , t O  o "  o~ a c r  t~ = a[g, .  F~/3-g ,~F~+6~g (F~,,Fp~-F~.F~)] (4) 

Now there is another approach to the dynamics of general relativity 
which is well known, that of Palatini (1919). However, the quite different 
expression for gravitational energy and momentum to which the Palatini 
formalism leads does not seem to have been used. My purpose here is to 
discuss this object and its possible significance. 

We return to our original Lagrangian, and no longer assume FTp to be 
the Christoffel affiinity {~p}. Instead, I ' ~ o  and gO,/3 are treated as independent 
fields for Hamilton's principle. The Lagrangian will then have the form 

= a g ~ R ~ ( r ,  ar)+ g) (5) 
c t  Variation of F~p yields F ~  = {~} as a consequence, variation of g"/3 gives 

the Einstein equations, and varying A leads to the equations of motion 
for the nongravitational variables. 

All of this is familiar. But we may go beyond the derivation of the field 
equations and calculate the canonical energy-momentum expression in the 
Palatini formalism, 

~ = (o~G/arL.~)rL,  ~ - 8 ~ G  (6) 
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This corresponds to (3) in Einstein's approach. Equation (6) has no term 
involving derivatives of Ea with respect to 9,~ since the Lagrangian 
contains no derivatives of the metric. Similarly, the canonical energy- 
momentum tensor for the nongravitational fields is 

v A A u ~,~ = (a~/aq,,,.)q~,. - a . ~  (7) 
It follows from the general Lagrangian formalism that the total canonical 
energy-momentum density will satisfy the conservation law 0 ~ (~ ~ + ~ ~) = 0. 

The object ~ has been encountered previously in nonsymmetric 
unified field theories (Einstein, 1955, Appendix 2; Murphy, 1976). In a 
purely affine theory, this is the only canonical energy-momentum expression 
which can be constructed. Here we wish to investigate this object within 
the context of Einstein's theory of gravitation. 

2. LAGRANGIANS FOR ELECTRODYNAMICS 

Before we consider the properties of gravitational energy and momen- 
tum given by the Palatini formalism, it will be instructive to examine the 
corresponding procedure for Maxwell's theory. This gives new ways of 
understanding both electrodynamics and gravitation. For electrodynamics 
we may use the Lagrangian 

~ = �88 ~ (8) 

with F ~  merely an abbreviation for A~,~ - A~,~. Varying the vector potential 
F~ = 0, while the set Ft.~,p 1-- 0 is an A,~ then gives the field equations ~ 

automatic consequence of the definition of F,~ in terms of A,.  The canonical 
energy-momentum tensor is 

E';~ = (af~l/aAo. , . )A~.~ - 8~" = - A o .  ~ F  ~ _!~-4~.~.w~p_~p (9) 

which differs from the symmetric expression . ~,~ -a,,~,* ~ -  by the 
divergence-free quantity A,, . , ,F "~. 

But we may also write the Lagrangian in the form 

E2-  -(A~.~F , F ~ , F  ) (10) 

with no a priori  relation between A~ and F ~  (Arnowitt et al., 1962). 
[However, (i0) reduces to (8) when the usual relation is assumed.] This is 
the analogue of the Palatini approach i n  general relativity. Varying F ~ 
now yields F ~  = A ~ , - A ~  ~, while variation of A~, results in F ~ 0. The 
canonical energy-momentum tensor calculated from E2 is the same as that 
from E~. 

We may add the divergence (A~F~).~ to E2 to obtain 

~3 = 1~ ~ . ~ , ~ a  ~.~ (11) - - ~ *  / * v - -  - -  z'x/a-t , v  
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N o w  A.  plays the role of  a set of Lagrange multipliers for constraints 
F ~  = 0. Variation of  F~.~, taking account of  its antisymmetry, will again 
give F.~ = A~.~, - A~,~. The canonical energy-momentum tensor is now some- 
thing new, involving derivatives of the field strengths: 

v a ]CPCrv -I-- 1 ~  ~" 1~ ' ~ , ~ , 8  (12) 

It is interesting that what are usually regarded as the dynamically 
significant field equations, F,~7 = 0, appear here as a set of constraints. We 
may compare this with the gravitational situation. The vacuum Lagrangian 
52G = afl""R~,~ is seen to have the form of a set of pure constraints R,,~ = 0, 
the vacuum Einstein equations, with g~'~ the corresponding set of Lagrange 
multipliers. This gives us at the outset a novel view of the dynamics of 
general relativity. 

3. THE CANONICAL PSEUDOTENSOR FOR THE 
PALATINI ACTION 

The gravitational energy-momentum pseudotensor defined by (6) is 
easily found to be 

~ = o~(g~F]~.~ - g ~ F ~ . .  - ;~ ~.91) (13) 

For pure gravitation 91 = 0, and R~., which now represents the total energy 
and momentum density, reduces to the simple expression 

v ~E~, o-] ~ = 2 a g  F ~ , .  (14) 

From this we immediately obtain an important result which was pointed 
out by Einstein (1955, Appendix 2) in the context of his nonsymmetric 
theory. For a static vacuum space-time there will be frames in which the 
affinity is independent of  time, so that R~ = 0. Thus, for such a space-time 
there will always be a frame in which there is no total energy or momentum. 

When the Christoffel affinity is substituted in (13) in accord with the 
field equations, we find that ~ is linear in the second derivatives of the 
metric. Thus, it differs both from the conventional pseudotensors and from 
intuitive ideas about energy density and flux. R~. has this feature in common 
with an object proportional to the Einstein tensor which was proposed by 
Lorentz (1916; see also Pauli, 1958) as a gravitational energy-momentum 
tensor. But, unlike Lorentz's object, R~, does not yield identically vanishing 
densities for total energy and momentum. 

v v One naturally asks about the relationship between R .  and t . .  If  the 
identity (1) is used to transform 91 in (13), and g,~ is written in terms of 
g"~ and {~p}, we obtain 

~ .  = t~. + (9.1,~. - 8 ~ 9.l,Pp) (15) 
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where 

- =  (16) 

It is interesting that the term added to t~ in (15) in fact has a vanishing 
ordinary divergence for a n y  92~: 92 ,~-~,,92,~-=0. Thus, the use of (15) 
with an arbitrary 92~ will give conservation laws. But (16), which arises 
directly from the Palatini action, will be of  special interest. 

We also note that the particular form of ~ means that the difference 
v between the energy densities calculated from ~ and t~ will always be an 

ordinary spatial divergence: ~ o _  to = _92%. In an asymptotically flat space, 
the energies calculated from ~o and t o will differ by a surface integral. 

The canonical formalism tells us that 0 ~ ( ~ + ~ ) = 0 ,  where ~ is 
given by (7). ~ may differ from the material energy-momentum tensor 
density more often used in general relativity, ~ ,  = 2 g ~ u 6 E ~ / r g ~ ,  by a 
quantity whose divergence vanishes. 

It can be shown (M~ller, 1972; see also Weyl, 1922) that the sum of 
~E ~ and the Einstein pseudotensor may in general be written as a divergence: 
t~+SE~,-s~,,p, where %, =2(O5~o/Og,~ )g  . For a static vacuum solution 
this yields t o 1 ~a = ~,,~. Explicit calculation gives 

p r n  -r p ' r  m - -  9 2  m t ~  

This is precisely canceled in ~o by the -9~" term, confirming our general , t r l  

result that ~o vanishes for a static vacuum space-time. But it is important 
to note that all  the components of  ~, ,  do not vanish. In particular, for the 
Schwarzschild solution in the common coordinates we find ~ = 4m cos 0. 

We may also calculate ~ ,  for exact solutions of the vacuum equations 
without a timelike Killing vector. With both t~ and ~ ,  the lack of a proper 
tensorial character makes interpretation of the results somewhat uncertain. 
For example, we may consider a gravitational plane wave described first" 
by the metric 

ds 2 = A d u 2  + du dv ~ d x  2 - dy 2 

where u = t - z ,  v = t + z ,  and A =  G ( u ) ( x 2 - y 2 ) ,  G being an arbitrary func- 
tion (Sachs, 1967). It is easy to show that all the components of both t~, 
and ~u  vanish in these coordinates. On the other hand, we may make a 
coordinate transformation and write the metric as 

ds 2 = d f l  - L2( e 2~ dxa + e -2~ dy 2) - dz  2 

with L and /3 functions of  u = t - z .  With this form we obtain tg= 
4 a L 2 ( / 3 ' 2 - L ' e / L 2 ) .  In the weak field limit, L-->I and t~-->4a/3 '2, which 
one might expect from an analogy with the electromagnetic Poynting 
vector. The Palatini formalism, however, gives ~0 3 = 4 a L 2 ( f l ' z +  L " / L ) ,  and 
this vanishes because the single nontrivial Einstein equation is precisely 
L" + L/3'2 = O. 
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A more disconcerting result is obtained when we consider radiation 
from a bounded source. When metric perturbations have the asymptotic 
form h,,~ = a,,~r -t exp[i to(r-  t)] with constant a, , /s so that the usual radi- 

v ation condition is satisfied, then t~,, which is quadratic in first derivatives 
of the metric, will contain terms with a 1/r 2 dependence. Calculation of 
the total energy flux yields the standard result /~ =--(~lm(fflm/45 for the 
power radiated by a system whose quadruple tensor is Qlm (Mr 1972). 
But the situation is quite different when R~ is used. In the weak-field 
approximation, this object has terms which are proportional to second 
derivatives of the metric perturbation. Thus, the energy flux in the "radiation 
zone" would be proportional to 1/r rather than 1/r 2, and the integrated 
flux will diverge unless the coefficient of the 1/r term happens to vanish. 
This result seems to make R~ useless for calculations of radiated power 
from finite systems. But this object may be significant, in a cosmological 
context. We proceed to discuss that possibility. 

4. MACH'S PRINCIPLE 

The Palatini formalism for energy and momentum produces some 
unusual results, as we have seen. The mass of an isolated particle (Schwarz- 
schild or Kerr metric) vanishes, and radiation from an isolated system 
cannot be given a simple meaning. These facts might tempt one to believe 

t ,  that ~ ,  can be of little use. 
However, there is an oft-discussed but still inadequately formulated 

concept in connection with which an object such as ~ ,  might be of interest. 
Mach's principle is the idea that in some way the inertia of any body is 
due to its interaction with the rest of the universe, and Einstein began the 
attempts to derive this result from general relativity by trying to show how 
inertial effects could arise through the field equations and the equations of 
motion (Mach, 1893; Einstein, 1955, pp. 99-108; Sciama, 1959; Murphy, 
1976). 

But the fact that general relativity allows solutions such as that of 
Schwarzschild, in which a single isolated particle has mass, means that 
Mach's principle is violated in a basic way in this theory. This is also true 
in other field theories in which a single particle has a nonvanishing self- 
energy and thus---because of Einstein's E = mc2----a nonzero self-mass. The 
"self-energy problem" in field theories has usually referred to a divergence 
of the self-energy of a particle. But from the standpoint of Mach's principle, 
any nonzero self-energy for a single particle is a problem. While this mass 
arises from interaction with a field, it is strongly localized in the vicinity of 
the particle in question. (For example, in quantum electrodynamics, most 
of the energy of an electron is concentrated in a region with dimensions 
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on the order of  ( h / m c )  e x p ( -  hc/e 2) (Weisskopf, 1939). In general relativity 
the energy cannot be localized in a way that has any invariant significance, 
but the fact that there is any energy at all is a problem. 

The use of  ~ to represent energy and momentum would begin to 
overcome this difficulty, since with this object there is no mass for an isolated 
particle in a proper coordinate system. (This result is due in part to our 
focus on vacuum solutions, since there is then no material energy-momentum 
tensor.) Of course, this is only a first step toward an adequate formulation 
of  Mach's principle. One would like to show how inertia of  a particle 
actually arises from its interactions with the rest of the matter in the universe. 
But there is little point in trying to take that step until self-inertia has been 
eliminated. 

The divergence of  the radiative flux from an isolated system also seems 
to point to the need to take Mach's principle into account more fully. The 
usual treatment of  radiation assumes an asymptotically flat space, but a 
universe in accord with Mach's principle probably would not allow such a 
solution. Wheeler (1962) has argued in the past for an interpretation of  
Mach's principle as a boundary condition for the Einstein equations, a 
condition that space be "properly closed." The radiative divergence which 
we have noted suggests that such a condition is indeed necessary. 
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